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A first example

Let us compute sin(0) and sin(7) using Python.

Image from https://fr.wikipedia.org/wiki/Fichier:Python-logo-notext.svg
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Floating-point numbers in a nutshell

Rough idea

Floating-point numbers use the “scientific notation” on base 2, where both
the significand and the exponent are written with a given number of bits.
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Floating-point numbers in a nutshell

Rough idea

Floating-point numbers use the “scientific notation” on base 2, where both
the significand and the exponent are written with a given number of bits.

Given a sequence of 64 binary digits
be3be2 - - - b1bo,

one defines the sign s by s := bg3z and the biased exponent e as the integer
whose representation in binary is bgp - - - bs».
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Floating-point numbers in a nutshell

Rough idea

Floating-point numbers use the “scientific notation” on base 2, where both
the significand and the exponent are written with a given number of bits.

Given a sequence of 64 binary digits
be3be2 - - - b1bo,

one defines the sign s by s := bg3z and the biased exponent e as the integer
whose representation in binary is bgp - - - bsa. Then, the floating-point
number encoded by b is

(—1)° - (L.bsabso - - o)y - 25719,
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Floating-point numbers in a nutshell

Rough idea

Floating-point numbers use the “scientific notation” on base 2, where both
the significand and the exponent are written with a given number of bits.

Given a sequence of 64 binary digits
be3be2 - - - b1bo,

one defines the sign s by s := bg3z and the biased exponent e as the integer
whose representation in binary is bgp - - - bsa. Then, the floating-point
number encoded by b is

(—1)5 . (]..b51b50 e bo)g . 2671023.

F: set of finite 64 bit (double precision) floating-point numbers.
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More about floating-point numbers

Nowadays, most of the floating-point units use the IEEE 754 standard.
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m representations for too;
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yet 0T =071).

Damien Galant



Floating-point computations Interval arithmetic Application: study of NLS on metric graphs
[ss ssssnss] OO

More about floating-point numbers

Nowadays, most of the floating-point units use the IEEE 754 standard.

There are several implementation subtleties:
m representations for too;

m several representations of 0, depending on the sign (e.g.
1/07 = 400, 1/07 = —cc...

yet 0t = 0_!). Note: in practice, Python raises a ZeroDivisionError.

Damien Galant



Floating-point computations Interval arithmetic Application: study of NLS on metric graphs
[ss ssssnss] OO

More about floating-point numbers

Nowadays, most of the floating-point units use the IEEE 754 standard.

There are several implementation subtleties:
m representations for too;

m several representations of 0, depending on the sign (e.g.
1/07 = 400, 1/07 = —cc...

yet 0t = 0_!). Note: in practice, Python raises a ZeroDivisionError.
® “not-a-number” (NaN, e.g. 0/0);

Damien Galant



Floating-point computations Interval arithmetic Application: study of NLS on metric graphs
[ss ssssnss] OO

More about floating-point numbers

Nowadays, most of the floating-point units use the IEEE 754 standard.

There are several implementation subtleties:
m representations for too;

m several representations of 0, depending on the sign (e.g.
1/07 = 400, 1/07 = —cc...

yet 0t = 0_!). Note: in practice, Python raises a ZeroDivisionError.
® “not-a-number” (NaN, e.g. 0/0);

m there is not a well-defined total order!
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More about floating-point numbers

Nowadays, most of the floating-point units use the IEEE 754 standard.

There are several implementation subtleties:
m representations for too;

m several representations of 0, depending on the sign (e.g.
1/07 = 400, 1/07 = —cc...

yet 0t = 0_!). Note: in practice, Python raises a ZeroDivisionError.
® “not-a-number” (NaN, e.g. 0/0);
m there is not a well-defined total order!

m etc.
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How not to launch a rocket

Figure: An Ariane 5 launcher (click for the video)

Image from https://commons.wikimedia.org/wiki/File:
Ariane_5_with_James_Webb_Space_Telescope_Prelaunch_(51773093465) . jpg,

video from https://www.youtube.com/watch?v=1qRUFg-Pte0
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What happened?

Roughly speaking:
m some code that worked perfectly on Ariane 4 was reused in Ariane 5;

® a particular quantity was stocked on 16 bits in this code (this is not
so much!);

m at some point, an overflow occurred, basically causing the rocket
suddenly believing it was horizontal and not vertical, causing the
failure of the launch.

The failure came entirely from the program used!

To summarize:

A first (obvious) limitation of numerical computations

F is finite!
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Rounding modes

Since F is finite, not all real numbers may be represented by floating-point
numbers.
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such a number.
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Rounding modes

Since F is finite, not all real numbers may be represented by floating-point
numbers.

Perhaps worse, even if a, b are floating-point numbers, a + b may not be
such a number.

There are thus several rounding modes, depending on whether the result is
to be rounded up, down, towards zero, etc.

Damien Galant
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Accumulation of round-off errors
The Vancouver stock index
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Figure: The BEL20 stock index

Image from https://commons.wikimedia.org/wiki/File:BEL_20.svg
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Accumulation of round-off errors
The Vancouver stock index

Between 1982 and 1983, the Vancouver stock index dropped anomalously
due to the accumulation of small round-off errors, due to the fact that
quantities were always rounded down after each computation.
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Figure: The BEL20 stock index

Image from https://commons.wikimedia.org/wiki/File:BEL_20.svg
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Accumulation of round-off errors
Patriot missiles

Figure: A Patriot missile launch

Image from

https://upload.wikimedia.org/wikipedia/commons/f/£8/Patriot_missile_launch_b. jpg
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Accumulation of round-off errors
Patriot missiles

In 1991, American Patriot missiles failed to intercept an incoming Scud
missile, killing 28 soldiers and injuring 100 other people, due to a bad
computation of internal time due to an accumulation of round-off errors.

Figure: A Patriot missile launch

Image from

https://upload.wikimedia.org/wikipedia/commons/f/£8/Patriot_missile_launch_b. jpg
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Summary of limitations

When numerical computations are performed, there are typically two,
rather distinct, “sources of errors”:
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approximation errors;
round-off errors.
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Summary of limitations

When numerical computations are performed, there are typically two,
rather distinct, “sources of errors”:

approximation errors;

round-off errors.
Example

Several errors occur when approximating fol f(x) dx: details on the
blackboard!
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approximation errors;
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Example

Several errors occur when approximating fol f(x) dx: details on the
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Approximation errors are typically studied by numerical analysts: rigorous
error bounds, convergence results, etc.
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Summary of limitations

When numerical computations are performed, there are typically two,
rather distinct, “sources of errors’:

approximation errors;
round-off errors.
Example

Several errors occur when approximating fol f(x) dx: details on the
blackboard!

Approximation errors are typically studied by numerical analysts: rigorous
error bounds, convergence results, etc.

As for round-off errors, in “practical applications” it is important to be
aware of them and to keep them small by design.
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Summary of limitations

When numerical computations are performed, there are typically two,
rather distinct, “sources of errors’:

approximation errors;
round-off errors.

Example

Several errors occur when approximating fol f(x) dx: details on the
blackboard!

Approximation errors are typically studied by numerical analysts: rigorous
error bounds, convergence results, etc.

As for round-off errors, in “practical applications” it is important to be
aware of them and to keep them small by design. This typically
involves a suitable stability analysis of the numerical methods.

Damien Galant
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Where are we now?

For us, an important question remains.

|
How to obtain mathematically rigorous results based on numerical
computations?
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Where are we now?

For us, an important question remains.

|
How to obtain mathematically rigorous results based on numerical
computations?

If only one could ignore round-off errors...
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A simple solution?

The main idea of interval arithmetic is very simple, yet powerful.

Damien Galant



Floating-point computations Interval arithmetic Application: study of NLS on metric graphs
[EEsssEssns] | sEEEsssss) [EEEEEEEEEEEns]

A simple solution?

The main idea of interval arithmetic is very simple, yet powerful.

The idea of interval arithmetic
We will replace numbers by intervals

Damien Galant



Floating-point computations Interval arithmetic Application: study of NLS on metric graphs
[annsnnnana] [ =nsnsnnns] OO

A simple solution?

The main idea of interval arithmetic is very simple, yet powerful.

The idea of interval arithmetic

We will replace numbers by intervals in such a way that the result of
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The idea of interval arithmetic

We will replace numbers by intervals in such a way that the result of
an operation belongs to the returned interval.

Appealing:
m to analysts: this is a quantitative version of the €'s and the 4's;
m to physicists: physical measurements are performed up to a finite
precision anyway.
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A simple solution?

The main idea of interval arithmetic is very simple, yet powerful.

The idea of interval arithmetic
We will replace numbers by intervals in such a way that the result of
an operation belongs to the returned interval.
Appealing:
m to analysts: this is a quantitative version of the €'s and the 4's;

m to physicists: physical measurements are performed up to a finite
precision anyway.

Although this may seem a paradox, all exact science is dominated by the
idea of approximation.

— Bertrand Russell, The Scientific Outlook
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The class Zr of intervals

The intervals we will consider are the topologically closed and connected
subsets of R (as specified in the standard IEEE-1788 devoted to interval
arithmetic!), i.e. they belong to the class Zr of subsets of R defined by

= (oo

U

[a,b] | a,b €R,a < b}
[a, —i—oo[\aeR}

u{]- wbeER}

{
{
{
{

U {]—o00, 400 := R}.

1See https://standards.ieee.org/ieee/1788/4431/.

Damien Galant


https://standards.ieee.org/ieee/1788/4431/

I;I:(]);gg:gt—g:(])int computations Interval arithmetic Application: study of NLS on metric graphs
Operations on intervals
Given two intervals x and y, their sum is given by

X+y:= {x+y\x€x,y€y},

their difference by

x—y::{x—y|X€x,y€y}

and their product by

x-y::{x-y|x€x,y6y}.
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Operations on intervals
Given two intervals x and y, their sum is given by
X+y:= {x—{—y\xéx,yéy},

their difference by

x—y::{x—y|XEx,y€y}

and their product by

x~y::{x-y|x€x,y6y}.

Examples and surprises: on the blackboard!
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In general: interval extensions

Definition
Let D CR beasetandlet F: D— R be amap.

An interval extension of F is an application F : Zr — Zr which satisfies
the containment property, namely so that for all x € Zg, the set

F(x) := {F(x) | x e xn D}

is included in F(x).
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is included in F(x).
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In general: interval extensions

Definition
Let D CR beasetandlet F: D— R be amap.

An interval extension of F is an application F : Zr — Zr which satisfies
the containment property, namely so that for all x € Zg, the set

F(x) := {F(x) | x e xn D}

is included in F(x).

Examples on the blackboard! Compare extensions of F : R — R : x — x?
with the product operation.
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Fundamental theorem of interval arithmetic

Theorem

If interval extensions of real functions fi, ..., f, are composed, the result is
an interval extension of the composition fi o - -- o fy.
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Fundamental theorem of interval arithmetic

Theorem

If interval extensions of real functions fi, ..., f, are composed, the result is
an interval extension of the composition fi o - -- o fy.

Allows to obtain interval extensions of complicated functions by composing
interval extensions of its subparts.

Damien Galant
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In practice

The set Zr is a mathematical notion.
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In practice

The set Zr is a mathematical notion.
In practice, the implementation will use intervals from the set

IF = {x = [x,X] | x <X are two floating-point numbers} U {(Z)}

Damien Galant
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Back to the computation of sin(7)

Let us use the “mpmath” library? in Python3 and ask the value of
iv.pi

then
iv.sin(iv.pi).

2See in particular the module iv, devoted to interval arithmetic at https://www.mpmath.org/doc/1.0.0/contexts.html.
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What interval arithmetic can and cannot do

m It may allow to prove that some values are nonzero, but it cannot
prove that some values are equal to zero.
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What interval arithmetic can and cannot do

m It may allow to prove that some values are nonzero, but it cannot
prove that some values are equal to zero.

Example

Let us evaluate iv.sin(1.) as well as iv.sin(iv.pi) and comment on
the result.
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the result.

m If a returned interval is “too big", it is valid but useless.
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What interval arithmetic can and cannot do

m It may allow to prove that some values are nonzero, but it cannot
prove that some values are equal to zero.

Example

Let us evaluate iv.sin(1.) as well as iv.sin(iv.pi) and comment on
the result.

m If a returned interval is “too big", it is valid but useless.
For instance, iv.sin(x) could return [-1, 1] regardless of the
value of x, but this bound is useless.
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What interval arithmetic can and cannot do

m It may allow to prove that some values are nonzero, but it cannot
prove that some values are equal to zero.

Example

Let us evaluate iv.sin(1.) as well as iv.sin(iv.pi) and comment on
the result.

m If a returned interval is “too big”, it is valid but useless.
For instance, iv.sin(x) could return [-1, 1] regardless of the
value of x, but this bound is useless.

m Nevertheless, it is in principle possible to show that given matrices are
invertible, positive/negative definite... using interval arithmetic.
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Locating roots of a function

Let F:[0,1] — R. If F is an interval extension of F and if x € Zg is
included in [0, 1], then
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Locating roots of a function

Let F:[0,1] — R. If F is an interval extension of F and if x € Zg is
included in [0, 1], then the implication

(0 ¢ F(x)) = (x does not contain any roots of F)
holds.
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Locating roots of a function

Let F:[0,1] — R. If F is an interval extension of F and if x € Zg is
included in [0, 1], then the implication

(0 ¢ F(x)) = (x does not contain any roots of F)

holds.

We may thus divide [0, 1] into many “small” intervals and discard all those
for which we are sure that F has no roots, this being determined by
evaluating the interval extension F.
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Locating roots of a function

Let F:[0,1] — R. If F is an interval extension of F and if x € Zg is
included in [0, 1], then the implication

(0 ¢ F(x)) = (x does not contain any roots of F)

holds.

We may thus divide [0, 1] into many “small” intervals and discard all those
for which we are sure that F has no roots, this being determined by
evaluating the interval extension F. We end up with (possibly many) small
intervals such that all potential roots of F belong to one of those.

Damien Galant
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Application of interval arithmetic to nonlinear analysis
Existence of the Lorenz strange attractor

The system of ODEs

Oitx1 = —ox1 +0x0
Orxp = px1 — X2 — X1X3,

Otx3 = —f8x3 + x1x2

was introduced by Edward Lorenz in 1963 as a simple model of
atmospheric dynamics.
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The system of ODEs

Oitx1 = —ox1 +0x0
Orxp = px1 — X2 — X1X3,
Otx3 = —f8x3 + x1x2

was introduced by Edward Lorenz in 1963 as a simple model of
atmospheric dynamics.

Remarkably, this system is chaotic (i.e., it is very sensitive to the initial
conditions in long time)
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Application of interval arithmetic to nonlinear analysis
Existence of the Lorenz strange attractor

The system of ODEs

Oitx1 = —ox1 +0x0
Orxp = px1 — X2 — X1X3,
Otx3 = —f8x3 + x1x2

was introduced by Edward Lorenz in 1963 as a simple model of
atmospheric dynamics.

Remarkably, this system is chaotic (i.e., it is very sensitive to the initial
conditions in long time) and possesses a strange attractor.
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Application of interval arithmetic to nonlinear analysis
Existence of the Lorenz strange attractor

The system of ODEs

Oitx1 = —ox1 +0x0
Orxp = px1 — X2 — X1X3,
Otx3 = —f8x3 + x1x2

was introduced by Edward Lorenz in 1963 as a simple model of
atmospheric dynamics.

Remarkably, this system is chaotic (i.e., it is very sensitive to the initial
conditions in long time) and possesses a strange attractor.

This fact, though conjectured since the 1960s, was only proved by Warwick
Tucker in 1999, using a computer-assisted proof using interval arithmetic.
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What is a compact metric graph?

A compact metric graph is made of a finite number of vertices
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What is a compact metric graph?

A compact metric graph is made of a finite number of vertices and of
edges joining the vertices.

\
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What is a compact metric graph?

A compact metric graph is made of a finite number of vertices and of
edges joining the vertices.

Metric graphs: the lengths of edges are important.
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Functions defined on metric graphs

g

€ €0

A compact metric graph G with three edges ey (length 5), e; (length 4) and e
(length 3)
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Functions defined on metric graphs

A compact metric graph G with three edges ey (length 5), e; (length 4) and e
(length 3), a function f : G — R
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Functions defined on metric graphs

fo

A compact metric graph G with three edges ey (length 5), e; (length 4) and e
(length 3), a function f : G — R, and the three associated real functions.
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Functions defined on metric graphs

fo

A compact metric graph G with three edges ey (length 5), e; (length 4) and e
(length 3), a function f : G — R, and the three associated real functions.

/gfdx ::/05ﬁ)(X)dx+/04ﬁ(X)dx+/()37‘2(x)dx
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We are interested in solutions (7, u), with u # 0, of the differential system

—u" =u on each edge e of G,

u is continuous  for every vertex v of G,
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The spectral problem on metric graphs

We are interested in solutions (7, u), with u # 0, of the differential system

—u" =u on each edge e of G,

u is continuous  for every vertex v of G,

d
Z d;l (v) =0 for every vertex v of G,
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The spectral problem on metric graphs

We are interested in solutions (7, u), with u # 0, of the differential system

—u" =u on each edge e of G,

u is continuous  for every vertex v of G,

d
Z 3 ! (v) =0 for every vertex v of G,
Xe

where the symbol e = vV means that the sum ranges over all edges of

vertex v and where C‘f—;’s(v) is the outgoing derivative of u at v
(Kirchhoff's condition).
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The spectral problem on metric graphs

We are interested in solutions (7, u), with u # 0, of the differential system

—u" =u on each edge e of G,

u is continuous  for every vertex v of G,

d
Z d;l (v) =0 for every vertex v of G,

where the symbol e = vV means that the sum ranges over all edges of
vertex v and where C?—;’s(v) is the outgoing derivative of u at v
(Kirchhoff's condition).

Remark: we always have dim E; = 1 with 3 = 0, considering constant
functions.
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Kirchoff's condition: degree one nodes

00
X1 -
im u(x1 +t) — u(x1) _0
t——0 t
t>0
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Kirchoff's condition: degree one nodes

00
X1 -
im u(x1 +t) — u(x1) _0
t——0 t
t>0

In other words, the derivative of u at x; vanishes: this is the usual
Neumann condition.
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Kirchoff's condition in general: outgoing derivatives
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The nonlinear Schrodinger equation on metric graphs

We generalize the spectral problem by introducing a nonlinear term (which
appears in models of optic fibers, Bose-Einstein condensates...).
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Damien Galant



Floating-point computations Interval arithmetic Application: study of NLS on metric graphs
[EEsssEssns] [EEsssssns] [ussss sssssss)]

The nonlinear Schrodinger equation on metric graphs

We generalize the spectral problem by introducing a nonlinear term (which
appears in models of optic fibers, Bose-Einstein condensates...).

Given p > 2, we are interested in solutions of

—u" 4 Au = y2|ulP~?u  on every edge of G,

(Pp)
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The nonlinear Schrodinger equation on metric graphs

We generalize the spectral problem by introducing a nonlinear term (which
appears in models of optic fibers, Bose-Einstein condensates...).

Given p > 2, we are interested in solutions of

—u" 4 Au = y2|ulP~?u  on every edge of G,
u is continuous on G,

(Pp)
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The nonlinear Schrodinger equation on metric graphs

We generalize the spectral problem by introducing a nonlinear term (which
appears in models of optic fibers, Bose-Einstein condensates...).

Given p > 2, we are interested in solutions of

—u" 4 Au = y2|ulP~?u  on every edge of G,

u is continuous ongG,

du g (PP)
Z (v)=0 for every vertex v.
e-v dxe
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The nonlinear Schrodinger equation on metric graphs

We generalize the spectral problem by introducing a nonlinear term (which
appears in models of optic fibers, Bose-Einstein condensates...).

Given p > 2, we are interested in solutions of

—u" 4 Au = y2|ulP~?u  on every edge of G,

u is continuous ongG,

du g (PP)
Z (v)=0 for every vertex v.
e-v dxe

When p = 2, the solutions of (P,) are the eigenfunctions in Ej.
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The nonlinear Schrodinger equation on metric graphs

We generalize the spectral problem by introducing a nonlinear term (which
appears in models of optic fibers, Bose-Einstein condensates...).

Given p > 2, we are interested in solutions of

—u" 4 Au = y2|ulP~?u  on every edge of G,

u is continuous ongG,

du g (PP)
Z (v)=0 for every vertex v.
e-v dxe

When p = 2, the solutions of (P,) are the eigenfunctions in Ej.
Question

What about p > 27
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The quasilinear regime p ~ 2 (p > 2)

Proposition

Let (pn)n>1 C ]2, 400[ be a sequence of exponents which converges to 2
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The quasilinear regime p ~ 2 (p > 2)

Proposition

Let (pn)n>1 C ]2, 400[ be a sequence of exponents which converges to 2
and (up,)n>1 € HY(G) be a sequence of nonzero solutions to the problems

(Ppn).
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The quasilinear regime p ~ 2 (p > 2)

Proposition

Let (pn)n>1 C ]2, 400[ be a sequence of exponents which converges to 2
and (up,)n>1 € HY(G) be a sequence of nonzero solutions to the problems
(Pp,). Assume that (up,)n converges weakly in HY(G) to a function

u, € HY(G).
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The quasilinear regime p ~ 2 (p > 2)

Proposition

Let (pn)n>1 C ]2, 400[ be a sequence of exponents which converges to 2
and (up,)n>1 € HY(G) be a sequence of nonzero solutions to the problems
(Pp,). Assume that (up,)n converges weakly in HY(G) to a function

u, € HY(G). Then, u, belongs to E;
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